Archive for the ‘Helen Taussig’ Category

24 hours at Johns Hopkins

November 28, 2010

“Because your whole world can change in 24 hours.” – The Paper (1994)

Tuesday, November 28, 1944: Sometime during the evening of the 28th, Dr. Alfred Blalock places a telephone call to the Surgical Laboratory at Johns Hopkins Hospital. His Surgical Assistant, Vivien Thomas, has recently developed a surgical correction for the heart defect known as Tetralogy of Fallot, also known as Blue Baby Syndrome. The two men have planned for Thomas to teach Blalock the steps needed to successfully complete the surgery during an operation on a dog. Blalock has done the operation only once and many more teaching sessions are needed.

Blalock is calling with grim news: Earlier he had asked Thomas about the possibility of operating on 19 month old infant Eileen Saxon. Weighing only nine pounds and often cyanotic, the dusky blue color that gives this malady its name, she is deteriorating rapidly. At the moment she is so cyanotic that she is purple and is struggling for every breath. Dr. Blalock tells Thomas to meet with Elizabeth Sherwood, the operating room supervisor, first thing in the morning. Thomas has invented several surgical tools specifically for this operation and he is to make sure that they are available.

Thomas is stunned and reminds Blalock that he doesn’t know the operation very well. “But if you don’t get ahead of yourself, break it down into smaller and smaller steps as you work, it can be done.” It is one of the familiar sayings Thomas uses when he is teaching proper surgical procedure and for a moment, Blalock feels as if he is the assistant.

After Blalock hangs up, Dr. Helen Taussig orders him home. Blalock protests, but she reminds him that he plans to operate in the morning – an operation that could very well be emergency surgery. The hospital has his telephone number should he be needed during the night. At roughly the same time, Thomas and Blalock leave for their respective homes. Segregation is still prevalent at the time and Thomas leaves by a back entrance; neither man knows the other one has left.

Dr. Taussig spends the night on the ward; Eileen’s parents are also there. Although they don’t know it, this is an ominous sign: in the 1940’s, visiting hours rules were strictly enforced unless a patient was seriously ill.

Wednesday, November 29, 1944: Too nervous to drive, Blalock asks his wife Mary to take him to the hospital. She lets him out of the car in front of the towering Johns Hopkins dome. Dr. Blalock enters the building, walks through the rotunda (rubbing the toe of the Statue of Christ for luck, an old Hopkins tradition) and turns left. From here he exits the building through a side door, walks approximately 50 yards, and into the Harriet Lane Home for Invalid Children. Vivien Thomas enters the Hopkins complex from a side entrance and goes immediately to Elizabeth Sherwood’s office. Miss Sherwood knows nothing about Dr. Blalock’s plan to operate but immediately shows Thomas the selection of items that will be available to Dr. Blalock. Thomas adds custom-made clamps and needles to the collection. These needles are no more than 1/2 inch long. Thomas insists that the clamps and needles not become part of the general operating room supplies – they have been custom made for this operation only.

Blalock and Taussig examine the child and confer. Eileen has not improved during the night, and Taussig concedes that there is nothing else that she can do. She leaves the meeting as Thomas arrives, perhaps to return to Eileen’s bedside or for a quick trip to the Cafeteria. Blalock and Thomas discuss the upcoming operation. They go over some of the more critical steps, and also discuss “routine” points such as where the incision should be made. Thomas informs him that Miss Sherwood has promised that the large operative theatre will be available but needs to know when the operation will begin. Blalock decides that the operation will take place after the morning rounds, unless events dictate otherwise. He leaves to confer with Eileen’s parents and to conduct Rounds. Thomas did not normally participate in Rounds so he would have gone to the Surgical Lab, although he may have gone to his office. He calls Miss Sherwood and informs her of Blalock’s decision.

The operative team convenes in the Scrub Room annex connected to Room 706. Although first chosen at random, the majority of Hopkins’ early heart surgeries will take place here and the room will come to be known as “The Heart Room.” Dr. William Longmire and Dr. Denton Cooley will assist. An unknown person sets up a movie camera pointed at the operating room table; this film still exists in the Johns Hopkins Hospital Archives.

Blalock continues to discuss the upcoming operation with Thomas as he prepares for surgery. Thomas is not scrubbed in and has no intention to – he is not allowed on the Operating Room floor. He will be seated in the raised seats of the theatre, however. Helen Taussig will be in the Operating Room, even though she is not a surgeon. She’ll spend most of her time at the head of the table, monitoring the patient.

A few minutes before Eileen arrives, Blalock quietly asks his scrub nurse to find Thomas and help him get scrubbed in. As expected, Thomas is seated in the bleachers above the OR. Blalock also orders a milk crate and has it placed behind him. Thomas stands on the crate, peering over Blalock’s shoulder at the operative field.

The operation begins with a curving incision near the 4th rib on the child’s left side. With Thomas guiding him, Blalock gently works past the lung and cuts a path to the heart. The heart is small, dark, and obviously struggling. William Longmire later said “I remember watching him open the patient and just thinking it was impossible.”

Blalock works patiently, finding the Left Subclavian Artery and the left branch of the Pulmonary Artery. He places a clamp on the Subclavian to cut off blood flow – using one of the clamps designed by Vivien Thomas for this procedure – and cuts it. He then places two similar clamps on the left branch of the Pulmonary Artery. Making a small opening in the Pulmonary Artery, Blalock uses the tiny needles Thomas has prepared to sew the Subclavian Artery into the Pulmonary Artery. After double checking his work, Blalock removes the clamps. He is unable to feel blood flowing through the new connection.

Legend has it that Helen Taussig said “Al, the child’s lips are a lovely pink color!” The Johns Hopkins online exhibit about the operation states that the anesthesiologist said “The boy’s a lovely color now!” at a later date, during the third operation. Blalock’s operative notes comment that the circulation in the nail beds of Eileen’s left hand “appeared to be fairly good.”

The difficult segments are complete but the operation is far from over. Sulfanilamide (an antibiotic) is introduced into the incision and Blalock begins to close. He sews the soft tissue closed with silk sutures and is finally done. The operation has taken about ninety minutes. (CLICK HERE to perform the Blalock-Taussig Procedure yourself. Read Blalock’s operative notes here:  PAGE 1 PAGE 2)

Eileen is moved to the Recovery Room, where Dr. Henry Bahnson is responsible for her care. As one might expect, Blalock and Taussig look in on her often.  Bahnson’s opinion is that the little girl is still very blue but improves over time. Eileen’s mother comments “When I saw Eileen for the first time, it was like a miracle… I was beside myself with happiness.” Very little is known of Thomas’ movements after the operation. He is seen in Recovery and also in his Lab.

As the sun sets on the city of Baltimore, Eileen remains in critical condition but she is stable. The operation is a success, but in a few months it will fail and she will need another Blalock-Taussig Procedure, this time on her right side. She will die just before her 3rd  birthday.  The doctors determine that the surgery is more suited to an older child whose blood vessels have had a chance to grow. In early 1945 Blalock and Taussig co-authored a medical journal article about the first three procedures. Hundreds of patients would flock to Johns Hopkins Hospital to receive the life-saving surgery, even though the odds were long: an article in the February 17, 1947 issue of The American Weekly noted that 14 of the first 70 patients had died.

But parents noted that 56 of them had lived and were growing up, something that had never happened before. The era of Congenital Cardiac Surgery has begun.

Celebrate Red and Blue Day

November 19, 2010

“What sort of day was it? A day like all days, filled with those events that alter and illuminate our times…” – You Are There, 1953

November 29, 1944: Dr. Alfred Blalock took one final look into the incision. It looked right… he had been operating for years, surgery shouldn’t make him nervous anymore. But this operation did. He had completed this same surgery on a dog only once, and no one had ever tried it on a human before. Let this work…

“Watch for bleeding,” his assistant reminded him as he started to remove the clamp. Blalock nodded, ready to drop the clamp back into place if the new connection leaked. But not too hard, too much pressure and you crush the Pulmonary Artery; do that and you kill the patient.

His partner, Dr. Helen Taussig, stood near the head of the table. Heart surgery had been her idea, she had just as much riding on this operation as he did. Probably more – she had assured both him and the child’s parents that the theory behind this operation was sound. The little girl’s heart defect caused Cyanosis – she was literally suffocating from lack of oxygen. Taussig’s theory was to reroute a blood vessel to the lung and increase the amount of oxygenated blood available. Blalock’s assistant, Vivien Thomas, had designed the operation and tested it. All three of them had their reputations on the line.

And the irony of it all was if things went bad, he’d probably be the one to suffer least. Blalock was the Chief of Surgery, after all. Taussig was an almost deaf female doctor (who ever heard of such a thing?) and Thomas was a Black man who official job description wasn’t supposed to bring him anywhere near a scalpel, much less doing experimental surgery. If things went wrong, they would be the ones hung out to dry.

So let’s not allow things to go wrong, Blalock thought as he inspected his work again. “I’m removing the clamps,” he finally said.

Reaching into the open wound, he gently touched the new connection. “I can’t feel any flow,” Blalock said, disappointed. After a long pause, Taussig spoke.

“Al, the baby’s lips are a glorious pink color.” Stunned, the surgeon watched as the child’s blue lips slowly turned pink.

Before that day in 1944 heart defects were almost always fatal, usually during the first year of life. Occasionally a child was lucky enough to survive to late childhood or the early teens, but that was only under the best of circumstances. And that “lucky” child had no strength, no energy, and very little Quality of Life. Even after that first surgery (the Blalock-Taussig Shunt)  there was still only one operation, designed to relieve the effects of one heart defect. The odds weren’t good, but CHDers now had a chance. And sometimes one chance is all you need.

CHD Survivors, our families, and our friends celebrate November 29 as Red and Blue Day. Participating in Red and Blue Day is simple – just dress in red and blue clothing. You don’t have to donate any money (though if you choose to, your favorite CHD Support Group would be an excellent choice!) and you don’t have to volunteer to do anything. Simple as can be. If anyone compliments you on your good taste or your color scheme, just be prepared to explain why you chose those colors.

A Heart Defect is an Invisible Disability… many of us don’t even look like we have a health problem. Some of us are Cyanotic, but you have to look really close (and know what you are looking for) to see it. But November 29 is OUR DAY, so wear Red and Blue… and let’s stand out!

What if…?

August 5, 2010

“Back in ’29 when I had TB, the X-rays showed a big, gaping hole in my left lung. I lay there on a freezing porch in a Sanatorium in upstate New York with eighteen blankets on me. Nothing but my nose exposed to the elements… I swore then that if I got my life back I would do something important with it.” – Dr Alfred Blalock (Alan Rickman), Something the Lord Made (2004)

I enjoy reading Alternate History. What is Alternate History? It’s not Science Fiction, it isn’t History, and good Alternate History isn’t always a time travel story. Alternate History takes a historical event – the more familiar the better – changes one fact, and then tells the story of what might have happened.

So let’s do our own Alternative History thinking. Alfred Blalock, a promising young researcher working at Vanderbilt University, really did contract Tuberculosis (also known as TB) and spent time in a Sanatorium. If we changed one fact – if Alfred Blalock had died from TB – would history change?

I think it would, and not for the better.

In real life, Vivien Thomas began to work for Blalock in February of 1930. Had Blalock died, the two never would have met. Forget their contributions at Johns Hopkins, while at Vanderbilt the pair were able to learn how and why the human body went into shock. Since they never worked together, there would have been more injured soldiers who died during World War II. Perhaps one could have been your father or grandfather? (Which raises the question: Would you even be here?)

Thomas was a skilled carpenter; he probably would have made a nice living building things in Nashville. But he would never repair a heart.

Helen Taussig‘s career would have been much different, too. The theory behind the Blalock-Taussig shunt was in her mind before she met Alfred Blalock. But she had already asked the surgeons at Johns Hopkins about performing the surgery, and had been turned down. Taussig then took a train to Boston and tried to convince Dr. Robert Gross to do the operation. Gross was the leading Heart Surgeon of the time, but he turned her down, too. Taussig would have returned to Baltimore and continued as the head of Pediatric Cardiology for the Harriet Lane Home for Invalid Children. Frustrated, she’d keep trying to understand broken hearts… but as long as there was no surgeon willing to listen to her, she’d never make much progress. And if she did find some one willing to risk a surgical procedure, it would never be named the Blalock-Taussig Shunt.

Assuming the operation was successful – Vivien Thomas did the majority of the research needed to design and execute the operation, but in our Alternate History he never worked with Blalock, never moved to Baltimore, and never met Helen Taussig. Without him standing on that milk crate talking Blalock through the operation, the chances of failure were much higher. The debacle of a failed heart operation could easily cost the unknown surgeon and Helen Taussig their jobs.

It would be a very different world for the very few CHDers who made it.

The women who saved us: Abbott and Taussig

July 5, 2010

“Tonight I’ve seen someone with no legs stay standing, Dad, and someone with no voice keep shouting.”C.J. Cregg, The West Wing

From the late 1800’s until the 1950’s, the field of Pediatric Cardiology was dominated by women. In fact, women were working in Pediatric Cardiology before anyone had ever named the specialty. Because Pediatric Cardiology wasn’t really a medical specialty – it was where kids (and medical careers) went to die. And no one who had any sense wanted anything to do with it.

This was the state of medicine when Canadian Maude Abbott became a doctor in 1894. The number of female doctors at the time – in both Canada and America – could be counted on one hand. The male dominated medical profession viewed a female doctor as little more than a well-educated nurse. Even female patients were leery of a woman doctor.

Born in 1869, Abbott had decided on a medical career and graduated from Bishop’s College medical school in 1894. Abbott had gotten her undergraduate degree from McGill College and had applied to their medical school, only to find that they didn’t want her. McGill was one of the many medical schools that did not admit women.

Unable to find a job that suited her, Doctor Abbott toured Europe. She returned to Canada in 1987, opening a practice in Montreal. Before long, a fellow doctor (and her less than successful practice) had convinced her to take a research job at Royal Victoria Hospital. While at Royal Victoria, Abbott became interested in hearts and did ground breaking research on heart murmurs. The paper was good enough to be accepted by the Montreal Medical Society for presentation to the Society at their annual meeting. But Abbott would not be able to present it; the Society did not allow female membership.

If the work were to be presented, a male member of the Society would have to do it. Reluctantly, Abbott turned over her work and the paper was presented. But when the paper appeared in the Medical Society journal, it was assumed by readers that the gentleman was the author. Time passed and people forgot; it wasn’t until the early 1970’s that the M. E. Abbott, MD listed on the title sheet was recognized as the actual writer.

By late 1898 Maude Abbott was back at McGill. Stung by the fact that they had turned away someone who would eventually be recognized by the Montreal Medical Society (even if she was just a girl) McGill wanted her… but they didn’t have any job to give her. Finally they appointed Dr. Abbott as Assistant Curator of the Medical Museum with a promise to promote her when the Curator retired.

A 19th century medical museum was not what you might expect. Its primary job was to help doctors learn, and the museum was full of preserved body parts. Even with preservation, the “exhibits” would wear out and new items were constantly being sought out. A good museum also had any number of unusual or diseased specimens – things doctors might not see very often. These were very much desired as medical training of the day was more hands on, and a good museum would have plenty of normal and unusual items to study.

McGill was not a good medical museum. Things were misplaced, mislabeled, or had disappeared. There wasn’t even a catalogue and no one seemed to know where anything was. Even worse, the employees had no medical training; you could refer to something by its scientific name and no one knew what you were talking about. Obviously the first job would be the hardest – catalog and organize everything, give it some sense of order.

Abbott’s boss looked at the calender – three weeks to his retirement. No way did he want to get involved in a major project this close to leaving. But if you want to, go right ahead. So Maude got busy.

And that is when she found it.  A preserved heart in a glass jar. But was this thing really a heart – there were what looked like two Atriums, but only one Ventricle. A deeper study revealed a second Ventricle, one so small that it was barely noticable. Two of the valves drained into the larger Ventricle, and she couldn’t tell what fed the other Ventricle. The label on the container read Ulcerative Endocarditis, but that had to be the cause of death. Endocarditis could not do this to a heart.

As expected, no one knew anything about the heart. Abbott knew someone who might; Dr. William Osler was a McGill graduate and an old friend. Osler was living in the United States and building Johns Hopkins into the institution that it would become. Abbott wrote Dr. Osler, describing the heart and asking if he knew anything about it.

Osler did know – he gave details that Abbott hadn’t noticed and he called it the “Holmes Heart” – so called because it had been donated to the medical museum by Andrew Holmes, that Medical School Director in 1822. The heart was so grossly deformed that an article about it appeared in the Edinburgh Medical Journal. (Experts surmise that the Holmes Heart very well may have been a Cor Triloculare Biatriatum heart, a very rare defect indeed.)

Curious still, Abbott searched for the issue of the Edinburgh Medical Journal that contained the research paper about the heart. She was shocked to discover that the heart was removed from a 22-year-old man during his autopsy. This heart had worked for twenty-two years? HOW? With that thought in her head, Doctor Maude Abbott decided to try to find out exactly how a defective heart worked… and perhaps one day, fix them.

And in that moment Congenital Cardiology was born.

Fast forward in time…

The situation was almost the same for Dr. Helen Taussig. By 1930, there were still very few female doctors, and opinion of them had not improved. Taussig was about to get a job at Johns Hopkins Hospital because she had gone to medical school there – it would be a bit difficult for the Hopkins Administration to award Taussig an MD and then claim that she wasn’t good enough to do the job. Helen wasn’t doing anything to discourage that thinking, because she had a little known secret: Helen Taussig, MD was losing her hearing.

Hopkins put her in charge of the Cardiac Care Unit of the Harriet Lane Home for Invalid Children, the dreaded Pediatric Cardiology department. In the 1930’s children with heart problems fell into two categories. One group had hearts weakened by Rheumatic Fever; these children would often recover but be left weakened by the disease’s attack on the heart valves; and children with Congenital Heart Defects (CHDs). CHDs were incurable with very few treatment options. If you were lucky a heart defect let you live until you were a teenager, but it always won in the end. 100% fatality rate – with luck, you could slow it down, but that was it.

Taussig was a natural-born researcher and could see only one way to try to figure out how heart defects worked. Nearly every day she sat down with grieving parents and asked a terrible question: May I conduct an autopsy on your child? She wouldn’t leave the job to others, Taussig would do the autopsy herself, and often she would remove and preserve the heart. In a few years her office was an unofficial medical museum, made up almost exclusively of hearts. Word started getting around about what she was doing and other doctors started complaining. Taussig’s boss and former mentor in medical school, Dr. Edwards Park, had to tell her to try to be a little more discrete several times. Taussig could make a bad situation worse by wanting to slice up a child, and by now her hearing loss was obvious. But the Cardiac Clinic was also producing some results, and most of the new ideas came from Taussig. Heart Defects (“Congenital Malformations”, as Taussig always called them) still won all the battles, but they were helping the kids live longer and better. If your child has a heart problem, doctors around the country were telling parents, get them to Hopkins.

Taussig had overcome her hearing problem with a special stethoscope that worked with a hearing aid (it was huge, the amplifier case is visible IN THIS PHOTO. Look for the black box balanced on the edge of the wheelchair) and by teaching herself to feel a heartbeat with her fingertips (CLICK HERE for a close up photo of her fingertip technique). But despite all this, there was nothing she could do. Children were living a little longer, and that was it.

Taussig observed what she called the “Fallot Squat,” when children with Tetralogy of Fallot (ToF) would squat deeply, folding their knee joints as much as possible. After thinking about this activity Taussig was able to determine that the children with low blood oxygen were actually suffocating, despite breathing deeply. Further investigation and reasoning gave her an idea: Heart surgery had never been tried before, but what if the blood vessels near the heart were moved around? Rearrange them to deliver more blood to the lungs and oxygenate it better. Would that work? Taussig thought that it would – but she wasn’t a surgeon, and couldn’t convince any of the Hopkins surgeons to try it.

A new Chief of Surgery arrived in late 1942, a man named Blalock from Vanderbilt University. It wasn’t love at first sight; in fact, the two disliked each other. The new doctor… well, he was a typical surgeon, thought the entire world revolved around him. His way or the highway. She wouldn’t admit to it, but Taussig could be stubborn herself. You didn’t mess with her patients, even a little bit. Add to that the fact that her deafness robbed her of a lot of opportunities for human interaction, and Helen Taussig was a loner. Her clinic, her patients, her research, her world. And very few people were admitted to that world.

It finally came to a head in the Hopkins Cafeteria. Legend has it that Taussig barged into a conversation between Blalock and Parks and took over. Working fast because she knew she’d have only one chance, Taussig convinced Blalock that she knew what she was talking about: an operation to direct more blood to the lungs of kids with defective hearts might work.

An additional year of research was frustrating, but necessary. Blalock and his research assistant, Vivien Thomas, had considered a similar idea while at Vanderbilt but had never progressed to human testing. Meanwhile, Helen was still doing autopsies. She didn’t like it, but moving too fast could ruin the entire project.

On November 29, 1944 they still weren’t ready but they tried anyway. Eileen Saxon was near death and could not wait much longer. Entering through an incision in her side, Blalock clamped the Subclavian Artery, cut it, and sewed it into the Pulmonary Artery. When the clamps were removed the surgical team watched in amazement as her blue lips slowly turned pink.

Even though all three of them have passed, Taussig, Blalock, and Thomas live on. The Blalock-Taussig shunt is still used today, and the entire field of Congenital Cardiac Surgery exists because of  them. “These children are my crossword puzzles,” Helen Taussig once said. “And one day I shall solve them.”

Room 706

May 5, 2010

The first Congenital Heart Surgery occurred on November 29, 1944 in Room 706 of the Harriet Lane Home for Invalid Children, the facility for children at Johns Hopkins Hospital. Located in the East Wing of the 4th floor, most of Hopkins’ early heart operations took place there. While there had been heart surgeries before this (Dr. Robert Gross had been repairing PDAs since 1938) this with the first surgical procedure specifically designed to relieve the effects of a Congenital Heart Defect. The operation was later named the Blalock-Taussig Shunt and is still in use today.

Here is a photo of Room 706 taken February 3, 1945 during the second Blalock-Taussig Shunt. (You can click on this photo and enlarge it) Blalock and his team are hard at work and most of the people who participated in that first operation are in this photograph. Ever wonder who they are, and what happened to them?

The first patient, Eileen Saxon, survived but again became Cyanotic a few months later. A second operation – once again the Blalock-Taussig Shunt, but on the opposite side of the body this time – was performed but Eileen died just a few days before her third birthday. In fact, fourteen of the first seventy patients to undergo the Blalock-Taussig Shunt died as the operating team learned the proper techniques needed for Cardiac Surgery.

Alfred Blalock (Surgeon, leaning over patient): Already head of the Hopkins Surgical Department and a Professor of Surgery, Blalock held those positions until he retired in 1964. He died a few months later.

Vivien Thomas (behind Blalock, face partially obscured by operating room spotlight): Thomas continued in his job as Surgical laboratory Assistant to Dr. Blalock and was later named Director of Surgical Research Laboratories. In 1976 he received an honorary doctorate from Johns Hopkins. Thomas retired in 1979 and died in 1985.

Olive Berger (Nurse Anesthetist, standing at head of table): Miss Berger is in this photograph but did not participate in the November 29 operation.                Anesthesiologist Merel Harmel been on duty that day, and either Harmel or Berger usually worked with Blalock. Miss Berger died in 1981 and her notebooks, currently in the Hopkins Archives, are considered important historical records of the first heart operations.

Denton Cooley (Across Operating Room table from Blalock): Just an intern at the time, Cooley would go on to form the Texas Heart Institute in 1962 and is considered one of the best heart surgeons in the world.

William Longmire (to Blalock’s left): After medical school, Longmire had left the residency program to run his father’s medical practice until the older Longmire recovered. Returning to Hopkins, he was granted a temporary residency and assisted during the first Blalock-Taussig shunt. Feeling he had earned his way back into a regular surgical residency program but having almost nowhere to put him, Dr. Blalock made him the Chief of Plastic Surgery.  Longmire left Hopkins in 1948 to become Chairman of Surgery at UCLA. He continued as Chairman of Surgery until 1976 and passed away in 2003.

Helen Taussig (Not identifiable but most likely in room): Already head of the Cardiac Division of the Harriet Lane Home, the operation would also bring her to prominence. Her 1947 book Congenital Malformations of the Heart (along with a second volume dealing with specific Heart Defects) were the first modern textbooks outlining the diagnosis and treatment of Congenital Heart Defects. Considered the mother of Pediatric Cardiology, Taussig would retire in 1963 but never ceased researching. In addition to her work with young Cardiac Kids, she was instrumental in preventing the use of Thalidomide in pregnant women in the United States. Taussig died in an automobile collision in 1986. The two women at the foot of the table are not Taussig; neither is the woman standing to Denton Cooley’s right. Taussig wore glasses, none of these three women wear them.

Room 706 itself: The Harriet Lane Home for Invalid Children closed in 1972 as the pediatric hospital moved into a more modern building. The old building was torn down in 1974.

Para Fuera: Dr. Richard J. Bing

April 4, 2010

Our post last Friday was about Dr. Richard J. Bing, who worked at Johns Hopkins Hospital during the 1940’s and was a colleague of Dr. Alfred Blalock and Dr. Helen Taussig. What follows is a short video about Dr. Bing, filmed on his 100th birthday.

The film centers more on the classical music that Dr. Bing has written and barely mentions his Cardiology accomplishments, but it still is a wonderful tribute to him.

Bing

April 2, 2010

He was born in Germany and composed many works of classical music. He graduated from medical school twice. He worked with Charles Lindburgh. And he started a Cardiac Catheterization program at the hospital where heart surgery was born. Not only did Dr. Richard Bing see history being made, he helped make it.

Hired in 1942 as an instructor in the Johns Hopkins University Department of Medicine, Bing traveled from New York to his new job in Baltimore. Crossing the Chesapeake Bay on a ferry, Bing noted no less than six people with Cyanosis. Their destination, he surmised, was probably the hospital. It was two years before Blalock and Taussig would attempt the first Congenital Heart Surgery, but Johns Hopkins already had a reputation. If your child has a bad heart, it was said, get them to Hopkins.

There wasn’t much at all that could be done, but Dr. Helen Taussig knew almost everything there was to know about the human heart. Taussig was a huge believer in research, and would spend hours examining defective hearts. Despite her best efforts – she often asked the parents of her deceased patients for permission to dissect the heart, and spent hours studying them in her lab – there was very little progress being made. Even after the first heart operation, very little was known. There was ONE operation, and it was designed to help relive only ONE defect. Everyone else was still out in the cold.

By 1945  Dr. Alfred Blalock asked Bing to set up a Cardiac Catheterization unit at the hospital. Dr. Helen Taussig, who had already been eyeing him suspiciously, hit the roof. Dr. Bing explained their constant disagreements:

She was very jealous and guarded her territory; she considered the sick children as her own, having no family herself. She was also deaf, which increased her suspicion of the world beyond.

(That link contains not only a good description of Taussig-Bing Anomaly, but an in-depth look at Johns Hopkins Hospital during the Blalock-Bing-Taussig years. I highly recommend reading it!)

Dr. Bing eventually left Johns Hopkins, continuing to do major research in the Cath Lab. While at Wayne State University he did some of the early work involving PET scans, using computers belonging to Ford Motor Company to run the scanner.

Dr. Bing retired and now lives comfortably in California, and last year celebrated his 100th birthday!

The Dirty Little Secret of HLHS

October 1, 2009

She didn’t even have a name for it.

When Dr. Helen Taussig wrote Congenital Malformations of the Heart in 1947, she described one malformation as “Atresia or marked hypoplasia of the aortic orifice prevents the expulsion of blood from the left ventricle in the normal manner.” Taussig described several variations of the defect – actually different defects, later grouped together under the same deadly name – but could offer no treatment suggestions. Her Tetralogy of Fallot (ToF) patients could at least squat and get some temporary relief; children cursed with this malady died in less than one week. The left side of the heart wasn’t damaged as much as it just wasn’t there.

It wasn’t until 1958 that Dr. Jacqueline Noonan and Dr. Alexander Nadas named the group of defects Hypoplastic Left Heart Syndrome (HLHS). Hypoplastic comes from the root word hypoplasia, which means “small”.

But having a name for it didn’t make it any less deadly as HLHS continued to claim 100% of its victims. This sad story continued until 1985, when the first successful infant heart transplant took place.

At about the same time the Norwood Procedure was developed. Originally designed as one operation (which consistently failed) the procedure was soon split into two heart operations – and eventually three – which seemed to work. HLHS children now had a chance. Obviously long term survival rates aren’t known yet, but approximately 70% survive the three surgery protocol.

And thats when the dirty little secret of HLHS showed itself: While survival rates for the three operation procedure may be in the 70% range, getting from Stage I to Stage II is the hardest step.

The goal of the Stage I operation is to make the Right Ventricle do the job of the defective Left Ventricle – getting the blood to the body. With all of the blood flowing through the right side of the heart, that side is subject to higher flow pressures than it usually receives. A lot higher. In a defect in which the entire left side of the heart is damaged, a successful outcome usually depends on the Tricuspid Valve – located on the right side of the heart.

The inital results were confusing. The Norwood worked – then it didn’t. There didn’t seem to be any rhyme or reason to it, no way to predict outcomes. The surgery itself worked, but too often the results  seemed to be as random as a roll of the dice. The answer was the Sano Shunt, invented by Japanese surgeon Shunji Sano – a direct connection from the Right Ventricle to the Pulmonary Artery through a Gortex conduit. (this sounds redundant, but the Pulmonary Artery is normally disconnected from the ventricle in the Stage I operation). Studies showed that survival chances with the Modified Norwood was 11 times greater than with the Classic Norwood.

And now it is time to turn the tables – we’ve got a nasty little trick of our own. Heart defects have to start somewhere… at some point in fetal development, there must be one isolated problem that seems to “snowball” into something bigger as time passes. If we could find that one little problem and repair it then, maybe we can stop the snowball before it gets too big. A pretty cool idea, and maybe one day…

Someday…

A study released Monday (September 28, 2009) revealed that for seven years, doctors at several hospitals in Boston and Harvard Medical School have been detecting Aortic Stenosis in fetuses. Fetal Aortic Stenosis is a snowball; it usually becomes HLHS as the fetus develops.

70 future HLHS patients underwent surgery while still in the womb – a needle was inserted into the mother’s abdomen, passed into the fetus, and into the heart of the unborn child. A small balloon was used to enlarge the abnormally small Aortic Valve. 51 of the procedures were considered successful… and 30% (17 children of the 51) were born with two functional ventricles. That’s 17 children who won’t have HLHS.

Mark September 28  on your calendar… that was the day that the CHD world changed forever.

What good is a deaf cardiologist?

November 30, 2008

Not much.

I’ve written about Vivien Thomas and Alfred Blaock; so it is time to write a few lines about the third person involved in the Blalock-Taussig Shunt: Pediatric Cardiologist Helen Brooke Taussig.

For those of you who may not know, Taussig’s my personal hero. When I was a patient at Johns Hopkins in 1967, Taussig herself examined me. From what my parents tell me, she was officially retired, but still lived in the Baltimore area and “stopped by the office” occasionally. I was five months old at the time, so I don’t remember it.

Her father was Frank Taussig, a prominent economist who taught at Harvard. Imagine his frustration when his daughter tried her best in school but still seemed to just not get it. I think every parent has shared that frustration at one time or another. It wasn’t her fault – it turns out that Helen Taussig had Dyslexia. Finally after a lot of patient work with her father everything just “clicked” and she was able to graduate. She went to the University of California at Berkley and then applied to Harvard Medical School.

The problem was, Harvard didn’t accept women into its medical program, so Helen tried Johns Hopkins Medical School instead. After she graduated, she took the job as head of the Cardiac Clinic at Hopkins’ children’s hospital, the Harriet Lane Home for Invalid Children.

Ironically, after becoming a doctor, Helen Taussig began to lose her hearing. And what good is a doctor – especially a cardiologist – who loses their hearing?

Thankfully, it wasn’t a sudden event. Helen Taussig lost her hearing slowly, and was able to compensate. Obviously a hearing aid would help, and she took full advantage of them. The movie Something the Lord Made is inaccurate in one respect: Mary Stuart Masterson (the actress who played the role of Helen Taussig) chose to use a more advanced hearing aid than was available at the time. The earpiece available in the early 1940’s was the size of an earmuff, and Masterson thought that such a large, bulky prop would distract from the character. (Look at this 1940’s era photo of Dr. Taussig examining a child in a wheelchair. The black box balanced on the edge of the chair is not Taussig’s medical bag, it is the amplifier for her hearing aid.)

As her hearing faded, she lost the ability to hear some of the chest sounds that a Cardiologist needs to hear to make a diagnosis. So she taught herself how to feel heartbeats by placing her fingertips lightly on the patient’s chest, and for years her hands were her “second stethoscope.” (Click here for a close-up photo of Taussig’s fingertip examination.)

Known mainly for her work in Pediatric Cardiology, few remember that Helen Taussig also played a critical role in averting the Thalidomide crisis in the United States. While Frances Kelsey receives credit (deservedly so) for not authorizing the drug for sale here, Taussig got involved when one of her German students commented that there had been a marked increase in the occurrence of Phocomelia in her home country. Taussig began to study the problem, and before long had determined that the morning sickness drug Thalidomide was causing birth defects. Because of Kelsey’s and Taussig’s actions, only 17 American children were affected by the drug.

So, what good is a deaf cardiologist? It all depends on who that deaf cardiologist is!